
The abbrevs LaTeX package
abbreviation macros (Frankenstein’s briefs)

Matt Swift <swift@alum.mit.edu>

Version: 1.4 Date: 2001/09/08
Documentation revision: 2001/09/08

Abstract

“Abbreviation macros” expand to defined text and insert following space
intelligently, based on context. They can also expand to one thing the first
time they are used and another thing on subsequent invocations. Thus
they can be abbreviations in two senses, in the source and in the document.
Useful applications include the abstraction of textual elements such as names
without fussing over spacing and the automatic expansion of abbreviations
and acronyms at their first use. The initial and subsequent expansions of
an abbreviation macro are available at any time via explicit commands.
Abbreviation macros are grouped into categories; there are hooks applicable
to each category. Categories can be reset so that subsequent abbreviation
macros in that category behave as if used for the first time again.

A generic facility is also provided for suffixes like 1900 b.c. and 6:00 p.m.,
which correctly handles following periods.

Contents

I Discussion 2

1 General 2

2 Usage 2

3 Date Marks 3

4 Emulation of acromake 4
4.1 Possible discrepancies . 4

5 Programmers’ interface 4

II Implementation 6

6 Version control 6

7 Requirements 6

1

8 Basics 7

9 Categories 8

10 Suffixes 8

11 Plain abbreviations 8

12 Control booleans 10

13 Switching abbreviations 10

14 Defining commands 12

15 Basic categories 12

16 Date marks 13

17 Emulation of Acromake 13

III Configuration 20

18 \DateMarkSize 20

19 Backwards compatibility 20

20 Suggestions 20

IV Testing 21

2

Part I

Discussion

1 General

An abbreviation macro \foo that expands to 〈text〉 is robust; \foo can be used\nospacelist

in place of 〈text〉 almost anywhere. A space is inserted following an abbrevi-
ation macro when the first non-white character following it is not in the set
\nospacelist, whose default value is ,.’:;?-/~!)]{}\�\/\@xobeysp.

When an abbreviation macro has different initial and subsequent expansions,
either may be explicitly requested by adding a suffix to the abbreviation macro.
The commands \〈command〉short and \〈command〉long are also defined when-
ever an abbreviation macro \〈command〉 is defined. Using the \〈command〉long
command does not affect what the next abbreviation macros expands to.

All abbreviation macros are assigned categories, identified by a string. Four
categories are defined by the package, and it is easy to add more. Categories
facilitate handling different groups of abbreviation macros in different ways.

Warning: Regarding CJK macros and probably other 8-bit input. If you use
the abbrevs package with the CJK macros for typesetting Chinese, Japanese, and
Korean text, you must define your abbreviations within the CJK environment. I
believe that the CJK macros work by interpreting 8-bit input in the source file.
But this input is only interpreted properly within the CJK environment. If you
define the abbrevs outside, such as in the preamble, you will just get a bunch of
numbers when your abbreviation expands.

I would use capital letters for the name of this macro, since it doesn’t seem
like a user command to me, but I’m modelling after the kernel’s \nocorrlist.

2 Usage

Examples of how to define abbreviation macros:

\newbook\worst{Worstward Ho}

\newbook\fall{All That Fall}

\newbook\nacht{Nacht und Tr\"aume}

\newbook\csp{Collected Shorter Plays \emph{(}CSP\emph{)}}[CSP]

\newname\joyce{James Joyce}[Joyce]

\newname\nixon{Richard Milhous Nixon}[Nixon]

\newname\ww{Wordsworth}

\newname\beckett{Samuel Beckett}[Beckett]

\newwork\godot{Waiting for Godot}[Godot]

\newbook\prelude{The Prelude}

\newabbrev\ART{American Repetrory Theater (ART)}[ART]

To do: Give example of using short or long.
Examples of how to use the macros, and how they are typeset:1

The manuscripts of \ww’s \prelude differ. \lips Before he began \prelude,
\ww wrote \lips

1\lips is defined in the lips package, part of the Frankenstein bundle.

3

LOOKS LIKE:
The manuscripts of Wordsworth’s The Prelude differ. . . . Before he began The
Prelude, Wordsworth wrote . . .

\nixon was the 37st American President. \lips Many Americans like my uncle
Norm voted for \nixon enthusiastically in both 1968 and 1972.

LOOKS LIKE:
Richard Milhous Nixon was the 37st American President. . . . Many Americans
like my uncle Norm voted for Nixon enthusiastically in both 1968 and 1972.

\beckett gained international noteriety with the play \godot in the early
1950s. \beckett wrote \godot, he said, as a diversion from the novels he
was then writing. I have seen this play at the \ART in Cambridge,
Massachusetts. The \ART is often disappointing, but I liked their
production of \godot.

LOOKS LIKE:
Samuel Beckett gained international noteriety with the play Waiting for Godot in
the early 1950s. Beckett wrote Godot, he said, as a diversion from the novels he
was then writing. I have seen this play at the American Repetrory Theater (ART)
in Cambridge, Massachusetts. The ART is often disappointing, but I liked their
production of Godot.

\newabbrev {〈\command〉}{〈initial〉}[〈subsequent〉] defines an abbreviation\newabbrev

macro 〈\command〉 of category Generic.
\newname {〈\command〉}{〈initial〉}[〈subsequent〉] defines an abbreviation\newname

macro 〈\command〉 of category Name.
\newbook {〈\command〉}{〈initial〉}[〈subsequent〉] defines an abbreviation\newbook

macro 〈\command〉 of category Book.
\newwork {〈\command〉}{〈bibliography key〉}{〈initial〉}[〈subsequent〉] defines\newwork

an abbreviation macro 〈\command〉 of category Work. Works can be distinguished
from books by being listed in a separate bibliography, e.g., of primary works
referred to by short titles in the main text. The defining command therefore
requires a BibTEX key as an argument. The first use of the work serves as a
citation to that bibliography, and all uses of the work generate an index entry.

To do: Works are not yet fully implemented. Presently they are the same as
Books.

3 Date Marks

These variants of abbreviation macros correctly handle following periods.\PM

\AM

\BC

\AD

She left for work before 6\AM, but
did not arrive until 12\PM. The
interval 5\BC--5\AD is one year
shorter than the interval
95\AD--105\AD.

4

LOOKS LIKE:
She left for work before 6 a.m., but did not arrive until 12 p.m. The interval 5
b.c.–5 a.d. is one year shorter than the interval 95 a.d.–105 a.d.

4 Emulation of acromake

We emulate the acromake package by Paul A. Thompson (version of 1995/7/16 at
CTAN:/macros/latex/contrib/other/misc/acromake.sty). Abbrevs will issue
an informative warning when it guesses it is about to fail because acromake is
already loaded (we cannot know for certain if it is). I will add an option so that
abbrevs and acromake can both be loaded if anyone persuades me it will be useful.

One reason to emulate acromake with abbrevs is that it can be done easily and
by doing so we can avoid keeping two packages around when one will do. Another
is that abbrevs is a more general and powerful package which adds value to acro-
make functionality. Abbrevs should be a drop-in replacement for acromake, but
you can also take advantage of features of abbrevs: acromake-style abbreviations
obey \TMInhibitSwitching, and they are defined as their own category of ab-
breviations, Acromake, so that acromake-style abbreviations can be manipulated
with the general mechanisms available to any category.

The following three acromake user commands are implemented in abbrevs.
\acromake {〈csname〉}{〈initial text〉}{〈final text〉} FIX dox\acromake

The macro \ACRcnta contains the number of times (default 1) the initial text\ACRcnta

(full text) is given. Use \renewcommand to redefine it.
The macro \ACRcntb contains the number of iterations (default 2) before the\ACRcntb

final text is given. The intermediate text (final text plus page reference) is therefore
given ACRcntb− ACRcnta times.

Define the macro \AcromakePageref to contain the text that expresses the\AcromakePageref

page reference. Abbrevs will replace the string ##1 in the definition of this macro
with the page number where the abbreviation was first used (more precisely, with
\pageref{〈label〉}). The default value is (see Page ##1) for compatibility with
acromake. The styles I am familiar with would call for a lowercase “page.”

Warning: \AcromakePageref not implemented yet

4.1 Possible discrepancies

The counter util and the macros \pv and \addtomacro are used internally by
acromake and are not defined in abbrevs. (If you managed to find some use for
\addtomacro, you will probably see easily how to redefine it in this context—and
if not, write me.)

The emulation may behave slightly differently due to the difference beteween
the way the xspace package handles following punctuation and space and the way
abbrevs does. I think abbrevs is very likely to be as good or better than xspace
at making these decisions. Let me know if you think otherwise.

5 Programmers’ interface

When abbreviation macros are reset, their next invocation will expand to the\ResetAbbrevs

initial text. Subsequent occurrences will expand to the subsequent text again. For

5

exmaple, using \ResetAbbrevs {Name} at the beginning of chapters will cause the
full name to be used only for the first occurrence in each chapter. \ResetAbbrevs
{〈category list〉} resets all abbreviation macros of the listed categories. The list is
comma-separated, and the category All is a shorthand for all defined categories.
Example:

\SaveCS\chapter

\renewcommand\chapter {%

\ResetAbbrevs{All}%

\MDSavedchapter

}

To create new categories of abbreviation, use \NewAbbrevCategory{〈category name〉}.\NewAbbrevCategory

\TMFontAll

\TMHookAll

\TMResetAll

\TMFont<category>

\TMHook<category>

\TMReset<category>

Macros \TMFont 〈category〉, \TMHook 〈category〉, and \TMReset〈category〉 are all
reserved. The hook and font slots start empty. The virtual category All is prede-
fined and refers to all defined categories. \TMHookAll and \TMFontAll are called
before the respective category-specific commands.

\NewUserAbbrevDefiner{〈defining command〉}{〈category〉}[〈definer〉] defines

\NewUserAbbrevDefiner

a user command 〈defining command〉. With the default 〈definer〉, \TMDefineAbbrevStandard,
the 〈defining command〉 will take the arguments {〈abbrev command〉}{〈initial text〉}
[〈subsequent text〉] and defines 〈abbrev command〉 to be a plain or switching
abbreviation macro as appropriate. If given, the optional argument 〈definer〉
should be a macro name, which will be first be passed a {〈category〉}, then
will read user arguments (e.g., in the case of \TMDefineAbbrevStandard,
{〈cs〉}{〈initial〉}[〈subsequent〉]). The 〈definer〉 is expected of course to do some-
thing like define {〈cs〉}.

The factory default suffixes “short” and “long” may be changed by changing\TMInitialSuffix

\TMSubsequentSuffix the definitions of \TMSubsequentSuffix and \TMInitialSuffix. The change
should be made after the package is loaded but before any abbreviation macros
have been defined.

Abbreviation macros like \PM are defined as \DateMarks, like this, without the\DateMark

final period:

\newcommand\PM {%

\DateMark{p.m}%

}

When \ifTMInhibitSwitching is true, first occurrences of an abbreviation\ifTMInhibitSwitching

\TMInhibitSwitchingfalse

\TMInhibitSwitchingtrue

\ifTMAlwaysLong

\TMAlwaysLongtrue

\TMAlwaysLongfalse

macro will expand to the initial expansion as usual, but they will not trigger the
change to subsequent expansions. Example: inhibit switching inside footnotes,
and abbreviations will not be spelled out for the first and only time in a footnote.
That is, if their first appearance is in a footnote, their first appearance in the main
text will also expand to the long version. See the configuration file for how to do
this.

When \TMAlwaysLong is true, every abbreviation macro expands to its initial
expansion.

6

Part II

Implementation

6 Version control

\fileinfo

\DoXUsepackagE

\HaveECitationS

\fileversion

\filedate

\docdate

\PPOptArg

These definitions must be the first ones in the file.
1 \def\fileinfo{abbreviation macros (Frankenstein’s briefs)}

2 \def\DoXPackageS {abbrevs}

3 \def\fileversion{v1.4}

4 \def\filedate{2001/09/08}

5 \def\docdate{2001/09/08}

6 \edef\PPOptArg {%

7 \filedate\space \fileversion\space \fileinfo

8 }

If we’re loading this file from a \ProcessDTXFile command (see the compsci
package), then \JusTLoaDInformatioN will be defined; othewise we assume it is
not (that’s why the FunkY NamE).

If we’re loading from \ProcessDTXFile, we want to load the packages listed in
\DoXPackageS (needed to typeset the documentation for this file) and then bail
out. Otherwise, we’re using this file in a normal way as a package, so do nothing.
\DoXPackageS, if there are any, are declared in the dtx file, and, if you’re reading
the typeset documentation of this package, would appear just above. (It’s OK to
call \usepackage with an empty argument or \relax, by the way.)
9 \makeatletter% A special comment to help create bst files. Don’t change!

10 \@ifundefined{JusTLoaDInformatioN} {%

11 }{% ELSE (we know the compsci package is already loaded, too)

12 \UndefineCS\JusTLoaDInformatioN

13 \SaveDoXVarS

14 \eExpand\csname DoXPackageS\endcsname\In {%use \csname in case it’s undefined

15 \usepackage{#1}%

16 }%

17 \RestoreDoXVarS

18 \makeatother

19 \endinput

20 }% A special comment to help create bst files. Don’t change!

Now we check for LATEX2e and declare the LaTeX package.
21 \NeedsTeXFormat{LaTeX2e}

22 \ProvidesPackage{abbrevs}[\PPOptArg]

7 Requirements

23 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

24 \RequirePackage{moredefs,slemph}

Warning: These docs could be much improved. There are far too many things
called “definers.” Cleaning up the basic code concepts wouldn’t hurt either.

7

8 Basics

Let’s begin with the tricky part of inserting space based on context. The strat-
egy is: first, if the following character is not in \nocorr and the current font is
not slanted, insert an italic correction with \sw@slant; second, if the following
character is not in \nospacelist, insert a space.

Again, in pseudocode:

LET T = the next token

IF (slanted font is current AND T NOT IN \nocorrlist)

\sw@slant

FI

IF T NOT IN \nospacelist

\space

FI

\nospacelist Put these in the order of their frequency. Anything in \nocorrlist should also be
in here, most likely. I’m putting in \@xobeysp because it’s in the xspace package,
but I can’t tell you when it would come up.
25 \requirecommand\nospacelist {%

26 ,.’:;?-/\slash~!)]\bgroup\egroup\@sptoken\ \space\/\@xobeysp

27 }

\maybe@ic@space

\maybe@ic@space@

\maybe@ic@space checks the next character and inserts an italic correction and
space as appropriate.
28 \newcommand\maybe@ic@space {%

29 \futurelet\@let@token\maybe@ic@space@

30 }

We first call the kernel’s \maybe@ic@, then our own \maybe@space@.
31 \newcommand\maybe@ic@space@ {%

32 \maybe@ic@

33 \maybe@space@

34 }

\maybe@space

\maybe@space@

\maybe@space and \maybe@space@ are very similar to the kernel’s analogs
\maybe@ic and \maybe@ic@, but they check \nospacelist instead of \nocorr.
\t@st@ic sets \@tempswa false if \@let@token is in \nospacelist.
35 \newcommand\maybe@space {%

36 \futurelet\@let@token\maybe@space@

37 }

38 \newcommand\maybe@space@ {%

39 \@tempswatrue

40 % \DTypeout{In maybe@space@ my lettoken is [\meaning\@let@token]}%

41 \expandafter \@tfor

42 \expandafter \reserved@a

43 \expandafter :%

44 \expandafter =%

45 \nospacelist

46 \do \t@st@ic

47 \if@tempswa

48 \space

49 \fi

50 }

8

9 Categories

\ResetAbbrevs

\NewAbbrevCategory

\TMResetAll

\TMHookAll

\TMFontAll

Each time an abbreviation of category C is defined, some tokens are added to the
contents of \TMReset〈C 〉.
51 \ReserveCS\TMResetAll

52 \ReserveCS\TMHookAll

53 \ReserveCS\TMFontAll

54

55 \newcommand\NewAbbrevCategory [1] {% args: category

56 \expandafter\ReserveCS\csname TMReset#1\endcsname

57 \expandafter\ReserveCS\csname TMFont#1\endcsname

58 \expandafter\ReserveCS\csname TMHook#1\endcsname

59 \expandafter\g@addto@macro

60 \expandafter\TMResetAll\csname TMReset#1\endcsname

61 }

62 \newcommand\ResetAbbrevs [1] {% args: category-list

63 \@for\sc@t@a:=#1\do {%

64 \@ifundefined{TMReset\sc@t@a} {%

65 \FrankenWarning{abbrevs}{The abbreviation category \sc@t@a\space

66 is not defined!}%

67 }{% ELSE

68 \@nameuse{TMReset\sc@t@a}%

69 }%

70 }%

71 }

10 Suffixes

\TMInitialSuffix

\TMSubsequentSuffix

When an abbreviation macro is created, two additional commands with these
suffixes are also created. For example, \foo, \foolong, and \fooshort. When
abbrevs are used in such a way that “long” and “short” don’t make sense, it would
make sense to change these to something more descriptive.
72 \newcommand\TMInitialSuffix {%

73 long%

74 }

75 \newcommand{\TMSubsequentSuffix} {%

76 short%

77 }

11 Plain abbreviations

The checking that \sw@slant does for skips and penalties on the list is going to be
superfluous for the applications I imagine. But we trade that for a more flexible
macro.

We don’t check for \nocorr or an empty body; maybe we should when it’s
first defined; but I ran into really hairy expansion troubles trying to do that and
use \DeclareRobustCommand. FIX.

\TMNewAbbrevPlain Things are easy when the abbreviation doesn’t switch between initial and subse-
quent expansions.

9

To do: pass root and suffix instead of \csname so that we don’t have to parse
it out again later from tmcurrentmacro

78 \ReserveCS\TMCurrentMacro

79 \newcommand\TMNewAbbrevPlain [3] {% args: \csname category body

80 \NewRobustCommand #1 {%

81 % \xdef\TMCurrentMacro {\expandafter\Gobble\string#1}%

82 \@bsphack

83 \TMHookAll

84 \@nameuse{TMHook#2}%

85 \@esphack

86 \ifmmode

87 \def\sc@t@a {%

88 \nfss@text{\@nameuse{TMFont#2}#3}%

89 }%

90 \else

91 \def\sc@t@a {%

92 \leavevmode

93 \begingroup

We can skip the check for emptiness and containing just a space, since those won’t
occur with abbreviation macros except by accident, I think. We proceed straight
to a check for \nocorrs.
94 \tm@check@nocorr #3\nocorr\@nil

95 \TMFontAll

96 \@nameuse{TMFont#2}%

97 \tm@check@left

98 #3%

99 \tm@check@right

100 \endgroup

101 }%

102 \fi

103 \sc@t@a

104 }%

105 }

\tm@check@nocorr This corresponds to the kernel’s \check@nocorr@. We simply substitute \maybe@
ic@space and \maybe@space in where necessary. We also use \tm@check@left
and \tm@check@right instead of \check@icl and \check@icr.

106 \NewName{tm@check@nocorr} {#1#2\nocorr#3\@nil} {%

107 \let\tm@check@left\maybe@ic

108 \def\tm@check@right {\aftergroup\maybe@ic@space}%

109 \def\reserved@a {\nocorr}%

110 \def\reserved@b {#1}%

111 \def\reserved@c {#3}%

112 \ifx\reserved@a\reserved@b

113 \ifx\reserved@c\@empty

114 \let\check@icl\@empty

115 \else

116 \let\check@icl\@empty

117 \def\check@icr {\aftergroup\maybe@space}%

118 \fi

119 \else

120 \ifx\reserved@c\@empty\else

10

121 \def\tm@check@right {\aftergroup\maybe@space}%

122 \fi

123 \fi

124 }

12 Control booleans

\ifTMInhibitSwitching

\TMInhibitSwitchingtrue

\TMInhibitSwitchingfalse

\ifTMAlwaysLong

\TMAlwaysLongtrue

\TMAlwaysLongfalse

Control booleans.
125 \newboolean{TMInhibitSwitching} % initially false

126 \newboolean{TMAlwaysLong} % initially false

13 Switching abbreviations

\TMNewAbbrevSwitcher Here is the main abbreviation macro definer. It works by defining two macros,
one for the initial text and one for the subsequent text, and setting up a third
user command to choose between the two as appropriate. (The first two are made
available to the user by explicit call as well.) The function used to define the
two macros is passed as the first argument to this function. Supplied definers are
\TMNewAbbrevPlain (I will write \TMNewAbbrevWork and \TMNewAbbrevDotclose
soon FIX). The second argument is the category—each definer takes at least three
arguments: a command name, a category, and the content. The third argument
is the user macro name to be created, and the fourth and fifth arguments are the
initial and subsequent expansion texts.

The first part sets three token variables to the three command sequences that
this macro is going to define—the user, initial, and subsequent commands. The
user command checks its associated boolean variable to see whether it has been
called before. If so, it calls the “subsequent” macro; if not, the “initial” macro.

127 \newcommand\TMNewAbbrevSwitcher [5] {% args: definer category csname

128 % % initial subseq.

129 \expandafter#1\csname #3\TMInitialSuffix\endcsname{#2}{#4}

130 \expandafter#1\csname #3\TMSubsequentSuffix\endcsname{#2}{#5}

131 \newboolean{@#3@mentioned}

132 \expandafter\g@addto@macro\csname TMReset#2\endcsname {%

133 \global\csname @#3@mentionedfalse\endcsname

134 }

We’ve created the initial and subsequent macros, and the boolean. Now we define
the user macro. This definition is tricky. In pseudocode, it looks like this:

if #3 definable then

#3 := { if (#3-mentioned AND NOT TMAlwaysLong) then

#3-short

else

if NOT TMInhibitSwitching then #3-mentioned := (global) true

#3-long

fi }

fi

11

Hmm, I’m not sure this is any more readable than a sea of \expandafter
\noexpands.

Notice that in a switching abbrev, the -mentioned boolean is set to true before
calling the macro itself, so that the hook can check and possibly alter the value.
The acromake emulation takes advantage of this.

135 \expandafter\@ifdefinable\csname #3\endcsname {%

136 % is ##1 below:

137 \EExpand\csname #3\endcsname\In {%

138 % ####1:

139 \EExpand\csname if@#3@mentioned\endcsname\In {%

140 % ########1:

141 \EExpand\csname #3\TMSubsequentSuffix\endcsname\In {%

142 % ################1:

143 \EExpand\csname @#3@mentionedtrue\endcsname\In {%

144 % ################################1:

145 \EExpand\csname #3\TMInitialSuffix\endcsname\In {%

146 % \gdef\<csname>{%

147 \gdef ##1{% must be NO SPACE before ‘{’ !

148 \@tempswafalse

149 % \if@<csname>mentioned

150 ####1%

151 \ifTMAlwaysLong\else

152 \@tempswatrue

153 \fi

154 \fi

155 \if@tempswa

156 % \def\sc@t@a {\<csname>\TMSubsequentSuffix}%

157 \def\sc@t@a {########1}%

158 \else

159 \ifTMInhibitSwitching\else

160 % \global\@<csname>@mentionedtrue

161 \global ################1%

162 \fi

163 % \def\sc@t@a {\<csname>\TMInitialSuffix}%

164 \def\sc@t@a {################################1}%

165 \fi

166 % \expandafter \gdef

167 % \expandafter\TMCurrentMacro

168 % \expandafter{\sc@t@a}%

169 \sc@t@a

170 }% close \gdef

171 }}}}}% close \EExpand...\In’s

172 }% close \@ifdefinable

173 }

Warning: The \csname s (e.g., either \foolong or \fooshort) must be the
very last thing to occur in the definitions, or the \futurelet that checks fol-
lowing spacing in, e.g., \TMNewAbbrevPlain will break. This is why we use the
construction with \sc@t@a . No space must sneak into the macros, either!

The hard work is done. Now we define some macros to help create new cate-
gories.

12

14 Defining commands

A 〈definer〉 is always called with a category as a first argument. The only definers
in this version of this package are this one and the one that emulates the acromake
package. More later!

\TMDefineAbbrevStandard

\tm@defineabbrevstandard

\TMDefineAbbrevStandard is the standard 〈definer〉 that makes the choice be-
tween defining an switching or a plain abbreviation, depending on whether the
user supplies a subsequent text.

174 \newcommand\TMDefineAbbrevStandard [3] {% args: category \csname

175 % initial [subsequent]

176 \@ifnextchar [{%

177 \tm@defineabbrevstandard{#1}{#2}{#3}%

178 }{% ELSE

179 \TMNewAbbrevPlain{#2}{#1}{#3}%

180 }%

181 }

182 \NewName{tm@defineabbrevstandard} {#1#2#3[#4]} {% args: category \csname

183 % initial subsequent

184 \eExpand\expandafter\Gobble\string#2\In {%

185 \TMNewAbbrevSwitcher\TMNewAbbrevPlain{#1}{##1}{#3}{#4}%

186 }%

187 }

\NewUserAbbrevDefiner

\tm@newuserabbrevdefiner 188 \newcommand\NewUserAbbrevDefiner [2] {% args: \csname category [definer]

189 \@ifnextchar [{%

190 \tm@newuserabbrevdefiner{#1}{#2}%

191 }{% ELSE

192 \tm@newuserabbrevdefiner{#1}{#2}[\TMDefineAbbrevStandard]%

193 }%

194 }

195 \NewName{tm@newuserabbrevdefiner}{#1#2[#3]} {% args: \csname category definer

196 \newcommand #1 {%

197 #3{#2}%

198 }%

199 }

15 Basic categories

\TMResetGeneric

\TMResetName

\TMResetBook

\TMResetWork

\TMHookGeneric

\TMHookName

\TMHookBook

\TMHookWork

\TMFontGeneric

\TMFontName

\TMFontBook

\TMFontWork

\newabbrev

\newname

\newbook

\newwork

Right now, the Book and Work categories are separate but equal. A future revision
will distinguish them by keeping track of more information about Works, with
the idea of using them to generate a separate bibliography and index in a long
document that refers to a certain list of books by short titles. E.g., my thesis is on
Samuel Beckett, and I want to refer to his works by short titles, and automatically
generate a Beckett bibliography of only the ones I use, listed by title.

200 \NewAbbrevCategory{Generic}

201 \NewAbbrevCategory{Name}

202 \NewAbbrevCategory{Book}

203 \NewAbbrevCategory{Work}

204 \NewUserAbbrevDefiner{\newabbrev}{Generic}

205 \NewUserAbbrevDefiner{\newname}{Name}

13

206 \NewUserAbbrevDefiner{\newbook}{Book}

207 \NewUserAbbrevDefiner{\newwork}{Work}

208

209 \def\TMFontBook {%

210 \itswitch

211 }

212 \def\TMFontWork {%

213 \itswitch

214 }

16 Date marks

\DateMark

\DateMarkSize 215 \newcommand\DateMark [1] {%

216 \hspace{.2em}{\DateMarkSize\scshape #1}%

217 \@ifnextchar. {%

218 \spacefactor\@m

219 }{% ELSE

220 .\maybe@ic@space

221 }%

222 }

223 \newlet\DateMarkSize\small

\PM

\AM

\BC

\AD

Some common time abbreviations.
224 \newcommand{\PM} {%

225 \DateMark{p.m}%

226 }

227 \newcommand{\AM} {%

228 \DateMark{a.m}%

229 }

230 \newcommand{\BC} {%

231 \DateMark{b.c}%

232 }

233 \newcommand{\AD} {%

234 \DateMark{a.d}%

235 }

17 Emulation of Acromake

Warning: This code is a mess! Consider all but the user functions “internal.” I
will reimplement it all another time. Meanwhile it works, and the user interface
is acromake’s anyway, so it won’t change.

\TMResetAcromake

\TMFontAcromake

\TMHookAcromake

\TMHookAcromakeHook

\TMAcromakeSecondarySuffix

\acromake

\tm@acromake@pageref

Define the category Acromake and declare its user defining command to be
\acromake. Create a suffix secondaryanalogous to \TMInitialSuffix and
\TMSubsequentSuffix.

Instead of building more generality into abbrevs, I emulate acromake with a
few hacks, since I don’t see a general need for more than two expansions. Counting
iterations, on the other hand, is something I would like to do for all abbrevs. Doing
so is tantamount to replacing the present -mentioned booleans with “counter”
macros.

14

The emulation is done in the following way. Let’s call the three expansions
of an acromake macro the 〈am-initial〉, 〈am-secondary〉, and 〈am-subsequent〉
expansions, in order. These must be mapped onto the abbrevs concepts of
inital and subsequent expansions. The \acromake command as I define it
here defines a switching abbrev whose initial text contains 〈am-initial〉 and
subsequent text contains 〈am-subsequent〉. It also defines a plain abbrev
with a suffix \TMAcroSecondarySuffix (analogous to \TMInitialSuffix and
\TMSubsequentSuffix) that expands to 〈am-secondary〉. In a switching abbrev,
the associated -mentioned boolean is set to true before calling the macro itself
(and therefore its hook). The hook can therefore reset the boolean to false, and
I do this in \TMHookAcromake until it is time to go from the 〈am-initial〉 to the
〈am-secondary〉 expansions. \TMInhibitSwitching affects the Acromake category
like all others, and \TMResetAcromake behaves as expected.

236 \@ifpackageloaded{acromake}{%

237 \FrankenWarning{abbrevs}{LaTeX is about to fail because \protect\acromake

238 is already defined.\MessageBreak Probably you have loaded acromake.sty, and if

239 so,\MessageBreak you should simply not load it, since abbrevs.sty

240 emulates\MessageBreak acromake.sty.}

241 }{%ELSE

242 }

243 \NewAbbrevCategory{Acromake}

244 \NewUserAbbrevDefiner{\acromake}{Acromake}[\TMAcromakeDefiner]

245

246 \newcommand\TMAcromakeSecondarySuffix {secondary}

247

248 \ReserveCS\tm@acromake@pageref

We’re going to use the main hook, so provide another free one.
249 \ReserveCS\TMHookAcromakeHook

I’m not sure why acromake does this check for odd values of \ACRcnta. I use logic
below that I think does reasonable things with odd values.

I think acromake tried to inhibit using 〈am-secondary〉 when it appeared on
the same page as the (first!) 〈am-initial〉 instance, but I also think there was a
spurious 0 in the source that broke this feature. I’ve emulated the working feature.

250 % consider these acromake functions internal for now!

251 % differs from regular version in passing args to definer

252 \newcommand\TMNewAbbrevSwitcherAcromake [5] {% args: definer category csname

253 % % initial subseq.

254 #1{#3}{\TMInitialSuffix}{#2}{#4}

255 #1{#3}{\TMSubsequentSuffix}{#2}{#5}

256 \newboolean{@#3@mentioned}

257 \expandafter\g@addto@macro\csname TMReset#2\endcsname {%

258 \global\csname @#3@mentionedfalse\endcsname

259 }

260 \expandafter\@ifdefinable\csname #3\endcsname {%

261 % is ##1 below:

262 \EExpand\csname #3\endcsname\In {%

263 % ####1:

264 \EExpand\csname if@#3@mentioned\endcsname\In {%

265 % ########1:

266 \EExpand\csname #3\TMSubsequentSuffix\endcsname\In {%

267 % ################1:

15

268 \EExpand\csname @#3@mentionedtrue\endcsname\In {%

269 % ################################1:

270 \EExpand\csname #3\TMInitialSuffix\endcsname\In {%

271 % \gdef\<csname>{%

272 \gdef ##1{% must be NO SPACE before ‘{’ !

273 \@tempswafalse

274 % \if@<csname>mentioned

275 ####1%

276 \ifTMAlwaysLong\else

277 \@tempswatrue

278 \fi

279 \fi

280 \if@tempswa

281 % \def\sc@t@a {\<csname>\TMSubsequentSuffix}%

282 \def\sc@t@a {########1}%

283 \else

284 \ifTMInhibitSwitching\else

285 % \global\@<csname>@mentionedtrue

286 \global ################1%

287 \fi

288 % \def\sc@t@a {\<csname>\TMInitialSuffix}%

289 \def\sc@t@a {################################1}%

290 \fi

291 % \expandafter \gdef

292 % \expandafter\TMCurrentMacro

293 % \expandafter{\sc@t@a}%

294 \sc@t@a

295 }% close \gdef

296 }}}}}% close \EExpand...\In’s

297 }% close \@ifdefinable

298 }

299 \newcommand\TMAcromakeDefiner [4] {% args: category csname acronym fulltext

300 \ifnum \ACRcnta < 1\relax

301 \def\ACRcnta {1}%

302 \fi%

Acromake uses a suffix of z here, which IMHO is a bad idea, so I use something
a user will not put in a source file: a prefix of tm@acromake@. See below for why
we start at −1.

303 \Global\NewName{tm@acromake@#2}{} {-1}% macro for counting occurrences

Define an abbrev that switches from 〈am-initial〉 to 〈am-subsequent〉. Hack the
resetting macro to reset the count as well as the -mentioned boolean. Reset to 0
not −1 so that we only label once! Is this an argument for having the “mentioned”
boolean switch at the transition from 〈am-secondary〉 to 〈am-subsequent〉? (so
that resetting goes back to 〈am-secondary〉 instead of 〈am-initial〉.) I think so; or,
better, define a new label each time we reset.

304 \TMNewAbbrevSwitcherAcromake\TMNewAbbrevAcromake{#1}{#2}{#4 (#3)}{#3}%

305 \expandafter\g@addto@macro\csname TMReset#1\endcsname {%

306 \global\DefName{tm@acromake@#2}{} {-1}%

307 }%

Define an additional abbrev that expands to 〈am-secondary〉. In the code below,
Fred replaces the #1 with something else with #1 in it; Ethel replaces the new #1
with the contents of \sc@toks@a. (The # is quoted with more #’s below.) Hmm,

16

this expansion business could probably be simplified by thinking it through from
the beginning.

308 % \def\tm@acromake@pageref {%

309 % \sc@toks@a={\noexpand\pageref{TMacromake:#2}}%

310 % \EExpand\AcromakePageref\In {% ‘‘Fred’’

311 % \EExpand\sc@toks@a\In {% ‘‘Ethel’’

312 % ####1%

313 % }%

314 % }%

315 % }%

316 % \eExpand\tm@acromake@pageref\In {%

317 \TMNewAbbrevAcromake{#2}{\TMAcromakeSecondarySuffix}

318 {Acromake}

319 {#3\ (see Page \pageref{TMacromake:#2})}%

320 % {#3\ ##1}%

321 % }%

322 }

Now define \TMHookAcromake. Arg, first have to define an alternative of
\TMNewAbbrevPlain because of the odd problem described above. Same as
\TMNewAbbrevPlain except takes first argument in two parts and defines , which
will be used in the hook.

323 \ReserveCS\TMCurrentMacroRootname

324 % plain’s args: csname category body

325 \newcommand\TMNewAbbrevAcromake [4] {% args: csname-root csname-suffix category body

326 \expandafter\NewRobustCommand\csname #1#2\endcsname {%

327 \gdef\TMCurrentMacroRootname {#1}%

328 \@bsphack

329 \TMHookAll

330 \@nameuse{TMHook#3}%

331 \@esphack

332 \ifmmode

333 \def\sc@t@a {%

334 \nfss@text{\@nameuse{TMFont#3}#4}%

335 }%

336 \else

337 \def\sc@t@a {%

338 \leavevmode

339 \begingroup

We can skip the check for emptiness and containing just a space, since those won’t
occur with abbreviation macros except by accident, I think. We proceed straight
to a check for \nocorrs.

340 \tm@check@nocorr #4\nocorr\@nil

341 \TMFontAll

342 \@nameuse{TMFont#3}%

343 \tm@check@left

344 #4%

345 \tm@check@right

346 \endgroup

347 }%

348 \fi

349 \sc@t@a

350 }%

17

351 }

352 %\def\tm@chop#1 {#1}%

353 %\def\tm@choplong#1long{#1}

354

355 \ReserveCS\tm@t % temp

356 \def\TMHookAcromake {%

We handle inhibition of switching as follows. If the count is −1, this is the first
iteration, so make the \label, increment the count to 0, and proceed. If switching
is not inhibited, increment the counter. Then proceed with choosing the right
expansion based on the counter. A first iteration in the normal case will therefore
increment the counter twice from −1 to 1. A first iteration in the case that
switching is inhibited will advance the counter once to 0, where it will stay until
switching is permitted.

I need to extract the root name from the three suffixed names – why can’t I
do that?!

\documentclass{minimal}

\begin{document}

\def\gobble#1{}

\def\one{j}

\edef\two{\expandafter\gobble\string\j}

%\edef\two{\two} % doesn’t help

\edef\three{\two}

\typeout{one: [\meaning\one]}

\typeout{two: [\meaning\two]}

[\one] [\two]

\typeout{\ifx\one\two ifx same\else ifx different -- WHY?!\fi}

\typeout{\if\one\two if same\else if different\fi}

357 % \edef\tm@t{\expandafter\strip@prefix\meaning\TMCurrentMacro}%

358 % \edef\tm@t{\E@cdr\tm@t\@nil}%

359 % \edef\tm@t{\expandafter\tm@choplong\TMCurrentMacro}%

360 \edef\tm@t{\TMCurrentMacroRootname}%

361 \ifnum\csname tm@acromake@\tm@t\endcsname = -1\relax

362 \eExpand\tm@t\In{%

363 % \typeout{initial: labeling ##1}%

364 \label{TMacromake:##1}%

365 }%

366 \tm@incmacro{\tm@t}%

367 \fi

368 \ifTMInhibitSwitching\else

369 \tm@incmacro{\tm@t}%

370 \fi

371 % \typeout{BEGIN: count is \csname tm@acromake@\tm@t\endcsname}%

When the count is < ACRcnta, reset the -mentioned boolean so that the expansion
will be the initial text i.e., 〈am-initial〉, again the next time.

372 % doesn’t work:

373 % \ifnum\csname tm@acromake@\tm@t\endcsname < \ACRcnta%

374 % doesn’t work:

375 % \ifnum\csname tm@acromake@\tm@t\endcsname < \ACRcnta %

376 % works: I have no clue why...

377 \ifnum\csname tm@acromake@\tm@t\endcsname < \ACRcnta\relax

18

378 % \typeout{use before cnta}%

379 \expandafter\global\csname @\tm@t@mentionedfalse\endcsname

380 \else

When the count is = ACRcnta, use the initial text (i.e., 〈am-initial〉) one last
time and switch to using 〈am secondary〉 next time. We allow the -mentioned
boolean to become true by refraining from resetting it. We save the existing
subsequent macro (which expands to 〈am-subsequent〉) and substitute the abbrev
that expands to 〈am-secondary〉. The bounds check on \ACRcnta at the beginning
guarantees that we execute this clause once.

381 \ifnum\csname tm@acromake@\tm@t\endcsname = \ACRcnta\relax

382 \ifTMInhibitSwitching\else

383 % \typeout{use at cnta A}%

384 \SaveName{\tm@t\TMSubsequentSuffix}%

385 % \typeout{use at cnta B}%

386 \global\EElet\csname \tm@t\TMSubsequentSuffix\endcsname

387 \csname \tm@t\TMAcromakeSecondarySuffix\endcsname

388 % \typeout{use at cnta C}%

389 \fi

390 \fi

When the count is > ACRcnta and <= ACRcntb, the expansion is 〈am-secondary〉,
we only check whether we are currently on the page of the original use of the
〈am-initial〉 text and in this case use 〈am-subsequent〉.

391 % \@tempswafalse

392 % \ifnum\csname tm@acromake@\tm@t\endcsname < \ACRcntb\relax

393 % \ifnum\csname tm@acromake@\tm@t\endcsname > \ACRcnta\relax

394 % \@tempswatrue

395 % \fi

396 % \else

397 % \ifnum\csname tm@acromake@\tm@t\endcsname = \ACRcntb\relax

398 % \@tempswatrue

399 % \fi

400 % \fi

401 % % ie cnta < count <= cntb

402 % \if@tempswa

403 % % \typeout{use between cnta and cntb}%

404 % \eExpand\tm@t\In{%

405 % \typeout{page [\thepage] ref [\r@TMacromake:##1]}%

406 % \expandafter\ifnum\expandafter\thepage\expandafter=\csname r@TMacromake:##1\endcsn

407 % % \typeout{this instance should be subsequent instead of secondary}%

408 % % insert a * to signal where:

409 % % *%

410 % % FIX how to do it?? I leave it broken for now, as it is broken in acromake

411 % % itself,

412 % \fi

413 % }%

414 % \fi

When the count is = ACRcntb, we want to restore the definition of the subsequent
macro. This test is not in an \else clause to handle the case where ACRcnta =
ACRcntb.

415 % \ifnum\csname tm@acromake@\tm@t\endcsname < \ACRcntb\relax

416 % \ifnum\csname tm@acromake@\tm@t\endcsname > \ACRcnta\relax

417 % \typeout{use between cnta and cntb}%

19

418 % \fi

419 % \fi

420 \ifnum\csname tm@acromake@\tm@t\endcsname = \ACRcntb\relax

421 % \typeout{use at cntb}%

422 \RestoreName{\tm@t\TMSubsequentSuffix}%

423 \fi

424 \fi

425 \TMHookAcromakeHook

426 }

\tm@incmacro

\c@tm@util

This is Paul’s trick for using a macro like a counter. I reduce the command
to its essential function in this context. It looks like Paul wanted a more general
command. I think if you define such a command (or set of commands that emulate
counters with macros) they do not belong here but in moredefs or their own
package. I also

427 \newcounter{tm@util}

428 \newcommand{\tm@incmacro} [1] {% arg: acroabbrev

429 \eExpand\csname tm@acromake@#1\endcsname\In {%

430 \setcounter{tm@util}{##1}%

431 }%

432 \stepcounter{tm@util}%

433 \expandafter\xdef\csname tm@acromake@#1\endcsname {\thetm@util}%

434 }

\ACRcnta

435 \newcommand\ACRcnta {1}

436 \newcommand\ACRcntb {2}

\AcromakePageref The string #1 will make it into the macro, which will in another context be replaced
with a \pageref.

437 \newcommand\AcromakePageref {(see Page ##1)}

438 % suggestion:

439 % \renewcommand\AcromakePageref {(see page ##1)}

20

Part III

Configuration
We’ve built up the groundwork and leave the definitions of useful things to the
configuration file.
1 \InputIfFileExists{abbrevs.cfg}{}{}

The contents of the distributed configuration file are below.

2 \def\fileinfo{Abbrevs package configuration}

3 \def\fileversion{v1.2}

4 \def\filedate{2001/08/31}

5 \def\docdate{1997/10/18}

6 \ProvidesFile{abbrevs.cfg}

18 \DateMarkSize

\DateMarkSize I like to use this definition instead of the one in the main file, but I didn’t want
to require abbrevs to depend on relsize.
7 \RequirePackage{relsize}

8 \def\DateMarkSize {%

9 \relsize{-1}%

10 }

19 Backwards compatibility

\TMNewCategory

\TMDefineAbbrevPlain

This can be uncommented to deal with anything you might have written that
referred to these variables before I changed their names.
11 % \newlet\TMNewCategory\NewAbbrevCategory

12 % \newlet\TMDefineAbbrevPlain\TMDefineAbbrevStandard

20 Suggestions

Here are ideas commented out that you might want to try.
You can learn a helpful general strategy about how to work with hooks in

LATEX from this example. If you put the inhibitor directly into \PreFootnote,
you could never take it out without either losing whatever else had been put into
\PreFootnote, or using some thorny procedure that stepped through the macro
and removed just the inhibitor (you don’t want to try that). If you add a “sub-
hook” to \PreFootnote, you can turn the subhook on or off without even knowing
what else in in \PreFootnote. You can’t redefine \TMInhibitSwitchingtrue. A
\newcommand would work as well as the \newlet here, a tad less efficient.
13 % \newlet\FootnoteTMHook\TMInhibitSwitchingtrue

14 % \addto@macro\PreFootnote {%

15 % \FootnoteTMHook

16 % }

To undo the effect later, say \let\FootnoteTMHook\relax or \global\let . . .
as appropriate.

21

Part IV

Testing
I’m presently writing a dissertation on Samuel Beckett. Although there is compar-
atively little biographical material available, it is well known that he spent several
years under the wing of James Joyce, another of the great writers in English this
century. Joyce and Beckett, it is curious, like other great writers, both had trouble
with their vision, and both were exiles in some sense. One of my favorite pieces
by Beckett is Worstward Ho, a short work written in the 1980’s not long before
his death: “Fail again. Fail better.” Worstward Ho is lyric and exalting to me.
A work I feel is underrated is the radio play All That Fall (all but his three long
plays are collected in Collected Shorter Plays (CSP)). It’s extremely funny, and
very touchingly compassionate. Because it is a radio play, it loses less from per-
formance to reading. I would recommend All That Fall to anyone. His later plays
(and fiction) are famously enigmatic, but with a little practice, it is not hard to see
the same lyric beauty and compassion. Take the brief television play Nacht und
Träume (in CSP of course), which has no dialogue, only a few murmured bars of
the Schubert song, also brief, and also called Nacht und Träume—it’s one of the
most hauntingly beautiful few minutes of music I’ve ever heard, and I particularly
recommend Cheryl Studer’s recording on Deutsche Grammophone. Every other
recording I’ve heard plays too fast.

Joyce is short for James Joyce, not Joyce Smith.
Now some more rigious and boring testing. Each pair should be identical.

initial hello
initial hello
subsequent hello
subsequent hello
subsequent tie
subsequent tie
subsequent regular text
subsequent regular text
subsequent : colon
subsequent : colon
subsequent ; semicolon
subsequent ; semicolon
subsequent. Period.
subsequent. Period.
subsequent ! Exclamation point.
subsequent ! Exclamation point.
subsequent? Question mark.
subsequent? Question mark.
subsequent-hyphen.
subsequent-hyphen.
subsequent texttt
subsequent texttt
subsequent (leftparen)
subsequent (leftparen)

22

(subsequent) rightparen
(subsequent) rightparen
subsequent, comma
subsequent, comma.
subsequent tmacro
subsequent tmacro
subsequent ’s face
subsequent ’s face
subsequent “quote”
subsequent “quote”
subsequent [leftbracket]
subsequent [leftbracket]
[subsequent] rightbracket
[subsequent] rightbracket
subsequentopen group
subsequentopengroup
subsequent close group
subsequent close group
subsequent {realbrace}
subsequent {realbrace}
subsequent 666 number
subsequent 666 number
subsequent x = y2 math
subsequent x = y2 math
subsequent $realdollar
subsequent $realdollar
subsequent #numbersign
subsequent #numbersign
subsequent/slash
subsequent/slash
subsequent italic correction
subsequent italic correction
subsequent explicit space
subsequent explicit space
subsequent \space
subsequent \space
subsequent \@xobeysp
subsequent \@xobeysp
The Central Intelligence Agency (CIA) is overthrowing Nigeria.
The CIA (see Page 22) is watching in your window right now.
The CIA (see Page 22) will stop that missile.
The CIA! The CIA! The CIA. The CIA guys.
Resetting Acromake abbrevs.
The Central Intelligence Agency (CIA)! The CIA (see Page 22)! The CIA (see Page
22). The CIA guys.

23

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\/ 26
\< 146, 156,

163, 271, 281, 288
\@ 160, 285
\@bsphack 82, 328
\@empty 113, 114, 116, 120
\@esphack 85, 331
\@for 63
\@ifdefinable

. 135, 172, 260, 297
\@ifnextchar

. . . . 176, 189, 217
\@ifpackageloaded . 236
\@ifundefined . . . 10, 64
\@let@token . . 29, 36, 40
\@m 218
\@nameuse . . . 68, 84,

88, 96, 330, 334, 342
\@nil . . 94, 106, 340, 358
\@sptoken 26
\@tempswafalse

. . . . 148, 273, 391
\@tempswatrue . . 39,

152, 277, 394, 398
\@tfor 41
\@xobeysp 26

\� 26, 319, 320

A
\ACRcnta 4, 300, 301,

373, 375, 377,
381, 393, 416, 435

\ACRcntb 4, 392,
397, 415, 420, 436

\acromake 4, 236
\AcromakePageref . .

. 4, 310, 437
\AD 3, 224
\addto@macro 14
\aftergroup 108, 117, 121
\AM 3, 224

B
\BC 3, 224
\begingroup 93, 339

\bgroup 26

C
\c@tm@util 427
\check@icl . . . 114, 116
\check@icr 117
\csname . . 14, 56–58,

60, 79, 129, 130,
132, 133, 135,
137, 139, 141,
143, 145, 174,
182, 188, 195,
257, 258, 260,
262, 264, 266,
268, 270, 305,
326, 361, 371,
373, 375, 377,
379, 381, 386,
387, 392, 393,
397, 406, 415,
416, 420, 429, 433

D
\DateMark . . . 5, 215,

225, 228, 231, 234
\DateMarkSize . . . 7, 215
\def 1–5, 8,

87, 91, 108–111,
117, 121, 156,
157, 163, 164,
209, 212, 281,
282, 288, 289,
301, 308, 333,
337, 352, 353, 356

\DefName 306
\do 46, 63
\docdate 1, 5
\DoXPackageS 2
\DoXUsepackagE 1
\DTypeout 40

E
\E@cdr 358
\edef 6, 357–360
\EElet 386
\EExpand 137,

139, 141, 143,
145, 171, 262,

264, 266, 268,
270, 296, 310, 311

\eExpand . . . 14, 184,
316, 362, 404, 429

\egroup 26
\else 90, 115,

119, 120, 151,
158, 159, 276,
283, 284, 336,
368, 380, 382, 396

\endcsname 14,
56–58, 60, 129,
130, 132, 133,
135, 137, 139,
141, 143, 145,
257, 258, 260,
262, 264, 266,
268, 270, 305,
326, 361, 371,
373, 375, 377,
379, 381, 386,
387, 392, 393,
397, 406, 415,
416, 420, 429, 433

\endgroup 100, 346
\endinput 19
\expandafter

. . . 41–44, 56–
60, 81, 129, 130,
132, 135, 166–
168, 184, 257,
260, 291–293,
305, 326, 357,
359, 379, 406, 433

F
\fi . . . 49, 102, 118,

122, 123, 153,
154, 162, 165,
278, 279, 287,
290, 302, 348,
367, 370, 389,
390, 395, 399,
400, 412, 414,
418, 419, 423, 424

\filedate 1, 4
\fileinfo 1, 2
\fileversion 1, 3

24

\FootnoteTMHook . 13, 15
\FrankenWarning 65, 237
\futurelet 29, 36

G
\g@addto@macro

. 59, 132, 257, 305
\gdef 146, 147,

166, 170, 271,
272, 291, 295, 327

\Global 303
\global . . . 133, 160,

161, 258, 285,
286, 306, 379, 386

\Gobble 81, 184

H
\HaveECitationS 1
\hspace 216

I
\if@ 149, 274
\if@tempswa

. 47, 155, 280, 402
\ifmmode 86, 332
\ifnum 300, 361, 373,

375, 377, 381,
392, 393, 397,
406, 415, 416, 420

\ifTMAlwaysLong . . .
. . 5, 125, 151, 276

\ifTMInhibitSwitching

. 5, 125,
159, 284, 368, 382

\ifx 112, 113, 120
\In 14, 137, 139, 141,

143, 145, 171,
184, 262, 264,
266, 268, 270,
296, 310, 311,
316, 362, 404, 429

\InputIfFileExists . . 1
\itswitch 210, 213

J
\JusTLoaDInformatioN 12

L
\label 364
\leavevmode 92, 338
\let 107, 114, 116

M
\makeatletter 9
\makeatother 18

\maybe@ic 107
\maybe@ic@ 32
\maybe@ic@space . . .

. 28, 108, 220
\maybe@ic@space@ . . 28
\maybe@space 35, 117, 121
\maybe@space@ . . . 33, 35
\meaning 40, 357
\MessageBreak . 238–240

N
\NeedsTeXFormat . 21, 23
\newabbrev 3, 200
\NewAbbrevCategory 5,

11, 51, 200–203, 243
\newbook 3, 200
\newboolean

. 125, 126, 131, 256
\newcommand 28,

31, 35, 38, 55,
62, 72, 75, 79,
127, 174, 188,
196, 215, 224,
227, 230, 233,
246, 252, 299,
325, 428, 435–437

\newcounter 427
\newlet 11–13, 223
\NewName

. 106, 182, 195, 303
\newname 3, 200
\NewRobustCommand .

. 80, 326
\NewUserAbbrevDefiner

. 5,
188, 204–207, 244

\newwork 3, 200
\nfss@text 88, 334
\nocorr 94, 106, 109, 340
\noexpand 309
\nospacelist . . 2, 25, 45

P
\pageref 309, 319
\PM 3, 224
\PPOptArg 1, 22
\PreFootnote 14
\protect 237
\ProvidesFile 6
\ProvidesPackage . . 22

R
\r@TMacromake 405
\relax 300,

361, 377, 381,

392, 393, 397,
406, 415, 416, 420

\relsize 9

\renewcommand 439

\requirecommand . . . 25

\RequirePackage . . 7, 24

\ReserveCS 51–
53, 56–58, 78,
248, 249, 323, 355

\reserved@a 42, 109, 112

\reserved@b . . . 110, 112

\reserved@c 111, 113, 120

\ResetAbbrevs 4, 51

\RestoreDoXVarS . . . 17

\RestoreName 422

S

\SaveDoXVarS 13

\SaveName 384

\sc@t@a 63–
65, 68, 87, 91,
103, 156, 157,
163, 164, 168,
169, 281, 282,
288, 289, 293,
294, 333, 337, 349

\sc@toks@a . . . 309, 311

\scshape 216

\setcounter 430

\slash 26

\small 223

\space 7, 26, 48, 65

\spacefactor 218

\stepcounter 432

\string 81, 184

\strip@prefix 357

T

\t@st@ic 46

\thepage 405, 406

\thetm@util 433

\tm@acromake@pageref

. 236

\tm@check@left
. 97, 107, 343

\tm@check@nocorr . .
. 94, 106, 340

\tm@check@right . . .
. 99, 108, 121, 345

\tm@chop 352

\tm@choplong . . 353, 359

\tm@defineabbrevstandard

. 174

25

\tm@incmacro
. . . . 366, 369, 427

\tm@newuserabbrevdefiner

. 188
\tm@t 355, 357–

362, 366, 369,
371, 373, 375,
377, 381, 384,
386, 387, 392,
393, 397, 404,
415, 416, 420, 422

\tm@t@mentionedfalse

. 379
\TMAcromakeDefiner .

. 244, 299
\TMAcromakeSecondarySuffix

. 236
\TMAlwaysLongfalse .

. 5, 125
\TMAlwaysLongtrue 5, 125
\TMCurrentMacro . . .

. 78, 81,
167, 292, 357, 359

\TMCurrentMacroRootname

. . . . 323, 327, 360
\TMDefineAbbrevPlain 11

\TMDefineAbbrevStandard

. 12, 174, 192
\TMFontAcromake . . . 236
\TMFontAll 5, 51, 95, 341
\TMFontBook 200
\TMFontGeneric 200
\TMFontName 200
\TMFontWork 200
\TMHookAcromake . . . 236
\TMHookAcromakeHook 236
\TMHookAll 5, 51, 83, 329
\TMHookBook 200
\TMHookGeneric 200
\TMHookName 200
\TMHookWork 200
\TMInhibitSwitchingfalse

. 5, 125
\TMInhibitSwitchingtrue

. 5, 13, 125
\TMInitialSuffix . .

5, 72, 129, 145,
163, 254, 270, 288

\TMNewAbbrevAcromake

. . . . 304, 317, 325
\TMNewAbbrevPlain .

. 78, 179, 185

\TMNewAbbrevSwitcher

. 127, 185
\TMNewAbbrevSwitcherAcromake

. 252, 304
\TMNewCategory 11
\TMResetAcromake . . 236
\TMResetAll 5, 51
\TMResetBook 200
\TMResetGeneric . . . 200
\TMResetName 200
\TMResetWork 200
\TMSubsequentSuffix

5, 72, 130, 141,
156, 255, 266,
281, 384, 386, 422

\typeout 363,
371, 378, 383,
385, 388, 403,
405, 407, 417, 421

U
\UndefineCS 12
\usepackage 15

X
\xdef 81, 433

26

