
A Few Packages by Donald Arseneau

Uwe Lück∗

March 18, 2012

Abstract

This document demonstrates the present (i.e., nicetext bundle release v0.4)
capabilities of makedoc and niceverb to typeset LATEX quality documen-
tation from third-party package files having ASCII comments only, with-
out modifying such package files manually.1 Such packages usually mark
comments by lines starting with ‘% ’. This is somewhat difficult when the
“comment mark” ‘%’ may at the same time be used for “commenting out”
in place of “true commenting.” As opposed to substr.sty that conforms
to the easier ‘%% ’ style, the packages nolbreaks and notoccite by Donald
Arseneau exemplify the ‘% ’ commenting style.

The ASCII documentation of packages of this kind does not always
clearly indicate when switching to \tt is appropriate. This problem is
solved here by string replacements very specific to the package files. The
setup for these replacements (in the source file arseneau.tex) still may be
simplified.

Moreover, some similar packages cannot be properly typeset with nice-
text at present because makedoc’s loop is too rigid to deal with (i) ASCII
indents, displays, lists and with (ii) instructions after \endinput. (On
2010/04/05, we try addressing (i) with wiki.sty, applied to Donald Arse-
neau’s optional. A nicetext bug with replacing tildes shows up.)

It should be clear that all the package desriptions are Donald Arse-
neau’s, nicetext just formats them.

Contents

1 nolbreaks 2

2 notoccite 3

3 optional 4

∗applying http://ctan.org/pkg/nicetext
1See http://ctan.org/pkg/nicetext for more on these packages.

1

http://ctan.org/pkg/nicetext
http://ctan.org/pkg/nicetext

1 NOLBREAKS 2

1 nolbreaks

1 % nolbreaks.sty by Donald Arseneau

2 % Public domain software -- please improve and submit to CTAN

3

4 \ProvidesPackage{nolbreaks}[2002/09/19 \space v 1.0 \space

5 - no linebreaks in text]

6

Use \nolbreaks{some text} to prevent linebreaks in some text. This has the
advantage over \mbox{} that glue (rubber space) remains flexible. It has the
disadvantage of not working in all cases! Most common cases are handled here
(\linebreak is disabled, for example) but spaces hidden in macros or { } can
still create break-points.

Large pieces of text with no breaks can cause problems with paragraph justifica-
tion. Giving the package option [ragged] allows a line before the unbreakable
text to be cut short.

You should declare \sloppy in your document.

7 \let\nb@ragged\relax

8

9 \DeclareOption{ragged}{

10 \def\nb@ragged{%

11 \skip@\lastskip \unskip

12 \nb@counter \lastpenalty

13 \hskip \z@ plus 2cm\relax

14 \penalty\nb@counter

15 \advance\skip@ \z@ plus -2cm\relax

16 \hskip\skip@

17 }}

18 \ProcessOptions

19

20 \let\nb@@iwspace=\ %

21 \let\nb@@hskip=\hskip

22 \let\nb@@penalty=\penalty

23 \newcount\nb@counter

24 \ifx\langwohyphens\undefined

25 \newlanguage\nb@lang

26 \else

27 \let\nb@lang\langwohyphens

28 \fi

29

30 \DeclareRobustCommand{\nolbreaks}[1]{%

31 \leavevmode

32 \begingroup

33 % Apply flexible lead-in

34 \nb@ragged

35 % Prevent hyphenation

2 NOTOCCITE 3

36 \language\nb@lang

37 % Disable commands that give breakpoints

38 \let\ \nb@iwspace

39 \let\hskip\nb@hskip

40 \let\penalty\nb@penalty

41 \let\language\nb@counter

42 % Prevent breaks in math

43 \relpenalty\@M

44 \binoppenalty\@M

45 % Prevent breaks at spaces (only outermost visible spaces)

46 \@PreserveSpaces \@empty #1 \@PreserveSpaces

47 \endgroup

48 }

49

50 \def\@PreserveSpaces#1 {#1\@ifnextchar\@PreserveSpaces{\@gobble}%

51 {\@firstofone{\nb@@penalty\@M} \@PreserveSpaces\@empty}}

52

53 \def\nb@iwspace{\nb@@penalty\@M \nb@@iwspace}

54 \def\nb@hskip {\nb@@penalty\@M \nb@@hskip}

55 \def\nb@penalty{\nb@@penalty\@M \nb@counter}

56

2 notoccite

1 % notoccite.sty no t.o.c. cite Jul 20, 2000

2 % Donald Arseneau asnd@triumf.ca TRIUMF, Vancouver, Canada,

3 % This is unrestricted software contributed to the public domain.

Ordinarily, cites used in titles or figure captions also appear in the table of
contents and list of figures. If you then run bibtex using the unsrt (unsorted)
style, they get numbered starting from 1, not the number they should have in
the main text.

A good option is to avoid cites in titles, and to specify optional caption text
without cites:

\caption[Picture of a bird.]{Picture of a bird \cite{audobon}.}

If you must use moving cites, you could manage them by deleting .toc and .lof

files, then running latex once, then bibtex. However, the following definition
fixes the problem so you don’t need to worry about that.

NOTE: This definition works for the ordinary LATEX definitions for \cite and
others (\addtocontents, \label) but it may well fail when used with various
packages for citations or cross references.

It works by locally setting \@fileswfalse, which is something like \nofiles,
but \@fileswfalse does not affect \label or \addtocontents. \nofiles does

3 OPTIONAL 4

most of its work by redefining \protected@write, and neither \addtocontents
nor \label check for \if@filesw. \cite does check \if@filesw.

4 \ProvidesPackage{notoccite}[2000/07/20]

5 \def\@starttoc#1{%

6 \begingroup

7 \@fileswfalse

8 \makeatletter

9 \@input{\jobname.#1}%

10 \endgroup

11 \if@filesw

12 \expandafter\newwrite\csname tf@#1\endcsname

13 \immediate\openout \csname tf@#1\endcsname \jobname.#1\relax

14 \fi

15 \@nobreakfalse

16 }

17

18

3 optional

1 %

2 % O P T I O N A L . S T Y

3 % ~~~~~~~~~~~~~~~~~~~~~~~

4 % ver 2.2b Jan 2005

5 %

6 % Enable multiple versions of a document to be printed from one source file,

7 % especially if most of the text is shared between versions.

8 %

9 % Copyright 1993,1999,2001,2005 by Donald Arseneau (asnd@triumf.ca).

10 % This software is released under the terms of the LaTeX Project Public

11 % License (ftp://ctan.tug.org/tex-archive/macros/latex/base/lppl.txt).

12 % (Essentially: Free to use, copy, distribute (sell) and change, but, if

13 % changed, that fact must be made apparent to the user.) It has a

14 % status of maintained.

How to Use

One way to use this package is to declare (for example)

\usepackage[opta]{optional}

at the beginning of your document, and flag optional text throughout your
document like:

\opt{opta}{Do this if option opta was declared}

\opt{optb}{Do this if option optb was declared}

\opt{optx,opty}{Do this if either option optx or opty}

\opt{}{Never print this text!}

3 OPTIONAL 5

\opt{opta}{\input{appendices}}

\optv{xam}{Type: \verb|[root /]$ rm -r *|.}

Note that both the package option and the \opt argument can contain lists of
options although, in practice, one or the other should be a single option name.
Lists are allowed in both places to allow more flexibility in the style of use. (But
making the definitions much more difficult, Grrr.)

Just as for \includeonly, you will have to edit the main document file to switch
option codes (i.e., change the \usepackage line). There are, however, several
ways to use this package without altering the main document file: separate files,
file-name sensing, interactive prompting, and command-line option selection.

Typically, different versions of a document will require different document class
and package setup, besides the different tags for optional.sty. In that case it is
best to have a separate main file for each version of the document. Each stub
file will declare the document class and load some packages (including this one)
and then input the rest of the document from a file common to all versions.

\documentclass[A0]{poster}

\usepackage[poster]{optional}

\input{my_paper}

If the different opt-tags match the different stub file names (file poster.tex will
typeset the poster version) then you can specify

\usepackage[\jobname]{optional}

Alternatively, this \jobname technique can make use of symbolic links, if your
computer system supports them, by having a single main input file accessed
under different names (and different \jobnames).

Another scheme is to invoke LATEX with the command line such as:

latex \def\UseOption{opta,optb}\input{file}

(with quoting appropriate to your operating system) then options opta and
optb will be used in addition to any options specified with the \usepackage

command.

You can prompt yourself to specify the option(s) with every run through LATEX:

\usepackage{optional}

\newcommand{\ExplainOptions}{man = users manual, check = checklist,

ref = reference card, post = poster.}

\AskOption

The definition of \ExplainOptions is optional; it only serves to help the person
who answers the question. The \AskOption is also optional; it will be executed
automatically whenever optional.sty sees no list of options. This method is too
tedious to use much.

3 OPTIONAL 6

The normal restrictions forbidding special characters in package options and
reference tags apply also the the tags used by the \opt command.

These are not comment macros: The optional text must be well-formed with bal-
anced braces, even if not printed. The \opt command is completely expandable

which means it is robust and can even be used in messages (\typeout).

As usual, \verb commands and verbatim environments cannot be used in the
argument to \opt. For this purpose there is a variant form of \opt called \optv

(optional verbatim) which may have a limited class of verbatim material in the
argument. It can do so by leaving the braces around the argument, which may
have undesired side effects. For an \optv argument to be successfully ignored,
the verbatim material must have balanced braces etc.

The \opt command is only intended for small sections of text. If you need to
optionally include whole sections or chapters, put that material in a separate
file, and \opt-ionally use an \input command:

\opt{internal}{\input{prog_listings}}

15 %====================== END INSTRUCTIONS ========================

16

17 \ProvidesPackage{optional}[2005/01/26 ver 2.2b; \space

18 Optional inclusion/omission]

Initialize used-option-list to \@gobble to eat the comma when the first entry is
appended.

19 \@ifundefined{UseOption}{\let\UseOption\@gobble}{}

20 \DeclareOption*{\edef\UseOption{\UseOption,\CurrentOption}}

21 \ProcessOptions

22 \AtBeginDocument{\Opl@Setup}

23

24 \newcommand*\opt[1]{\if\Opl@notlisted{#1}\expandafter\@gobble

25 \else \expandafter\@firstofone \fi}

26

27 \newcommand*\optv[1]{\if\Opl@notlisted{#1}\expandafter\@gobble\fi}

28

This initial definition forces immediate setup if \opt used in the preamble

29 \def\Opl@notlisted{\fi \Opl@Setup \if\Opl@notlisted}

30

31 \newcommand\AskOption{%

32 \@ifundefined{ExplainOptions}{}{\typeout{\ExplainOptions}}%

33 \typein[\UseOption]{Specify which optional text to process:}%

34 }

35

36 \def\Opl@Setup{%

37 \ifx\UseOption\@gobble\AskOption\fi

38 \let\Opl@notlisted\@empty % initialize list of checks

39 \@for\@tempa:=\UseOption\do{%

3 OPTIONAL 7

40 \ifx\@tempa\@empty\else\expandafter\Opl@oneop\expandafter{\@tempa}\fi}%

41 \ifx\Opl@notlisted\@empty \PackageWarning{optional}%

42 {No options were selected, so all optional text will be printed}%

43 \let\opt\@secondoftwo

44 \else

45 \typeout{Using optional text marked with \UseOption. }%

46 \toks@\expandafter{\Opl@notlisted}%

47 \edef\@tempa{\def\noexpand\Opl@notlisted####1{,\the\toks@,}}\@tempa

48 \fi

49 \let\Opl@Setup\@empty \let\Opl@oneop\undefined

50 \let\AskOption\undefined \let\ExplainOptions\undefined

51 }

52 \begingroup

53 \catcode‘\Z= 3 % special delimiter

54 \gdef\Opl@oneop#1{%

55 \@ifundefined{Opl@Match@#1}{%

56 \toks@\expandafter{\Opl@notlisted}%

57 \edef\Opl@notlisted{\the\toks@ \csname Opl@Match@#1\endcsname ,####1,#1,Z}%

58 \@namedef{Opl@Match@#1}##1,#1,##2Z{##2}%

59 }\relax

60 }

61 \endgroup

62 \endinput

63

	'nolbreaks'
	'notoccite'
	'optional'

