
revnumerate — a reverse
enumerate-environment∗

Jörn Wilms†

December 13, 2008

1 Introduction
While writing on a style-file for the list of references section of my CV I realized
that there is no environment in LATEX that enumerates items in reverse order.
In my case I needed such an environment to present my list of publications in
descending temporal order, while keeping them numbered in ascending temporal
order. In other words, the first publication should be labeled with “1.” while still
being the last in the list, since the most recent publications should be presented
first.
While this problem is easily stated at first, a solution of it was more difficult:
Since the number of items in the list is not known at the beginning, they need to
be counted first, then the number of items in the environment needs to be written
in LATEXs aux-File, to be used in the next LATEX-run. In addition, the environ-
ment should fit smoothly into the already existing environments of LATEX and
the interface should just behave like the normal enumerate-environment, so that
style-changes to enumi. . . enumvi would also affect the revnumerate environment.
My solution to the problem is documented below, if you have comments, if you
have found bugs, or if you have extensions to the environment, send me email at
wilms@astro.uni-tuebingen.de.

2 The User-Interface
The user-interface to the revnumerate-environment is very simple. For example,revnumerate

\begin{revnumerate}
\item Point three is the most important,
\item Point two is not as nice,
\item and Point one is uninteresting.

\end{revnumerate}

and running LATEX twice gives

3. Point three is the most important,
∗This file has version number v1.0, last revised 1997/05/10.
†Universität Tübingen, Institut für Astronomie und Astrophysik, Abt. Astronomie, Wald-

häuser Str. 64, D-72076 Tübingen, Germany, email: wilms@astro.uni-tuebingen.de

1



2. Point two is not as nice,

1. and Point one is uninteresting.

The revnumerate-environment has an optional argument that gives the starting
number:

\begin{revnumerate}[10]
\item One
\item Two
\item Three
\item Four
\end{revnumerate}

results in

10. One

9. Two

8. Three

7. Four

It is possible to nest the environment with the other LATEX-environments without
any problems, as well as using the normal redefinition of \theenumi to \theenumiv
to get a different behaviour of the output:

\renewcommand{\labelenumi}{\S\theenumi.}
\renewcommand{\theenumii}{\roman{enumii}}
\begin{enumerate}

\item This is point one
\item This section has two subpoints:
\begin{revnumerate}

\item Subpoint two\label{pt22}
\item Subpoint one

\end{revnumerate}
\item and Point three.

\end{enumerate}
Where point~\ref{pt22}\ldots

The above text gives

§1. This is point one

§2. This section has two subpoints:

(ii) Subpoint two
(i) Subpoint one

§3. and Point three.

Where point 2ii. . .

Pretty nice, isn’t it?

2



3 The Code
First we identify the style-file.

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{revnum}[1997/05/10 v1.0 reverse enumerate, jw]

Next, we need to create four new counters, rev@cnti to rev@cntiv. These
counters are used in the environment to count the number of revnumerate-
environments present at each possible level. Since we need to keep track on how
many entries each environment contains, we need a way to create counters such
that they uniquely define each environment. The solution to this is to use an
“index”, provided by rev@cnti to rev@cntiv that gets appended to the counter
for each environment. If that confuses you, see below.

3 \newcounter{rev@cnti} \def\therev@cnti{i\arabic{rev@cnti}}
4 \newcounter{rev@cntii} \def\therev@cntii{ii\arabic{rev@cntii}}
5 \newcounter{rev@cntiii} \def\therev@cntiii{iii\arabic{rev@cntiii}}
6 \newcounter{rev@cntiv} \def\therev@cntiv{vi\arabic{rev@cntiv}}

revnumerate Now let’s start with the revnumerate-environment. We have one option, the start
number. If it is not given we initialize the start-number to −1, to indicate to the
code that we want to use the value from the .aux-file.

7 \newenvironment{revnumerate}[1][-1]%
8 {%

As in the case of generic LATEX-environments, only four nestings are possible. The
current depth is given by the counter \@enumdepth, and if it is larger than three
we need to output an error-message. If not, we increase the nesting-depth by one.

9 \ifnum\@enumdepth >\thr@@\@toodeep\else
10 \advance\@enumdepth\@ne

As the generic environments, we use one of the counters enumi to enumiv as
the counter for our environment. This way, all changes made to the counters
\theenumi. . . \theenumiv will also affect the revnumerate environment.
11 \edef\@enumctr{enum\romannumeral\the\@enumdepth}

To count uniquely identify the current revnumerate-environment, we use one of
the counters rev@cnti to rev@cntiv. We first define, which counter to use, call it
\@revcnt and then increase it by one to get the number of the current environment.
12 \edef\@revcnt{rev@cnt\romannumeral\the\@enumdepth}
13 \stepcounter{\@revcnt}

The number of items in the current list will be counted with a counter called
something like revi1, revii1, revii2, etc. The name of this counter is created
by appending the value of rev@cnti to rev@cntiv to the string rev.
14 \edef\the@revcnt{rev\csname the\@revcnt\endcsname}

If the current counter is not known yet, i.e. if the counter has not been defined
in the .aux-file, then we need to define it with \newcounter and initialize it.
Just using \newcounter is not enough, since that will initialize the counter to 0.
Since the revnumerate-environment counts the counter backwards, this would give
negative counter-values, which would result in bogus error-messages if the counter
is output, e.g. in alphabetical manner. We therefore initialize it to 26, which
should give positive numbers for all revnumerate-environments where alphabetical

3



output is desired. The strange \ifx. . . \relax sequence is an \if@undefined. I
don’t know why I didn’t use \if@undefined directly. . .
15 \expandafter\ifx\csname c@\the@revcnt\endcsname\relax%
16 \newcounter{\the@revcnt}
17 \setcounter{\the@revcnt}{26}
18 \fi

In the next step we need to initialize \@enumctr, which will produce the labels to
be output, to its starting value. This value is either the value given by the counter
\the@revcnt, or it is the argument of the environment. In the default-case, when
the argument did not have an argument, #1 gets set to −1.
19 \ifnum #1 <0
20 \setcounter{\@enumctr}{\value{\the@revcnt}}
21 \else
22 \setcounter{\@enumctr}{#1}
23 \fi

Since we need to add −1 to \@enumctr before we output the label. Only in this
case the \label-command will work correctly. I don’t know why, but at least the
current implementation works. In addition we need to reset the \the@revcnt-
counter back to zero to count the number of items in the current environment.
24 \stepcounter{\@enumctr}%
25 \setcounter{\the@revcnt}{0}%

The revnumerate-environment is defined via the list-environment, thus making
it easily changeable. For outputting the label we first reduce the environment-
counter \@enumctr by one and then add one to \the@revcnt. Then the “variable”
\@currentlabel, which contains the way the current position in the text will
be referenced with \ref gets set to something like \p@enumi \the@enumi. The
commands \p@enumi to \p@enumiv are usually defined in the class and are used
to make labels more meaningful. For example, a reference to subpoint “b” of item
number 3 will result in a “3b”, and not just “b”. Finally, the label is output using
one of the commands \labelenumi to \labelenumiv.
26 \begin{list}%
27 {\addtocounter{\@enumctr}{-1}%
28 \stepcounter{\the@revcnt}%
29 \global\edef\@currentlabel
30 {\csname p@\@enumctr\endcsname\csname the\@enumctr\endcsname}%
31 \csname label\@enumctr\endcsname%
32 }{}%
33 \fi
34 }{%

At the end of the environment, we need to write the number of items in the current
environment to the aux-file. Since the aux-file is read twice during the processing
of a LATEX-file, once at the beginning and once at the end of the document, it is
not sufficient to just output a \newcounter and a \setcounter. Instead, we have
to output the \if@undefined-sequence to only do a \newcounter if necessary (i.e.
during the first read on the aux-file). What I have not figured out yet is how to
warn the user that the file needs to be processed twice. This could be done using a
label, but that seems unelegant. So far, we’ll just hope that everybody is TEXing
the file at least twice. . .
35 \end{list}

4



36 \protected@write\@auxout{}{%
37 \string\expandafter%
38 \string\ifx\string\csname\space c@\the@revcnt\string\endcsname\relax%
39 \string\newcounter {\the@revcnt}\string\fi
40 }
41 \protected@write\@auxout{}{%
42 \string\setcounter {\the@revcnt}%
43 {\number\csname c@\the@revcnt\endcsname}
44 }
45 }

5


